
From Research Wiki

1 CAN Clock
1.1 Introduction

1.1.1 Motivation
1.1.2 Objective

1.2 Procedure
1.2.1 Reverse Engineering CAN IDs

1.2.1.1 Unique Messages on CAN bus
1.2.1.2 Examining the CAN Capture

1.2.2 CAN Clock Proof of Concept
1.2.2.1 Hardware Supplies
1.2.2.2 Tools
1.2.2.3 Software
1.2.2.4 Tutorial
1.2.2.5 Wires associated with power
1.2.2.6 CAN data lines

1.3 Code
1.4 Resources

This page serves as the documentation for the CAN Clock research project that was conducted as a result of the
Vehicle Communication Systems class that was led by Dr. Jeremy Daily, and Dr. Mauricio Papa during the
spring of 2013 at The University of Tulsa. This article assumes the user has a general understanding of
conventional networking, along with a basic understanding of Controller Area Networks (CAN). This research
describes a method for reverse engineering CAN messages on passenger automobiles by visually correlating
physical system interactions with identifiable patterns. The methods used for identifying these messages were
used to construct a fully functional CAN based clock. The clock was composed of an instrument cluster from a
2003 MINI Cooper S where the speedometer and tachometer were leveraged. The clock is controlled by CAN
messages sent over a CAN network. The Speedometer is used as the hour hand of the clock, with the range of
10-120 MPH used as 1:00-12:00. Similarly, the tachometer range of 0-6000 RPM is used for the 0-60 minute
range of the minute hand. Note: The instrument cluster used in this project was from a wrecked MINI Cooper
that was involved in a staged auto collision with a GMC Envoy.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

1 of 27 8/8/2013 10:49 AM

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

2 of 27 8/8/2013 10:49 AM

Motivation

Designed as a multimaster broadcast serial bus to interconnect embedded systems within automobiles, such as
Electronic Control Units (ECUs), CAN is the defacto standard for communication among devices within a
vehicle network. The CAN protocol stack and subsequent devices that reside on CAN networks have been
designed with safety, and reliability being the utmost priority. However, little efforts have been put into the
security of such networks. This is especially alarming if a CAN node becomes under adversarial control, placing
the rest of the components on the network at risk. The CAN Clock proof of concept demonstrates the ease in
which an attacker could take control of other, more serious components, such as safety critical devices.

Objective

The primary objective for this project is to convert the instrument cluster pack of the MINI Cooper into a

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

3 of 27 8/8/2013 10:49 AM

functional clock. In order to meet this primary objective, several secondary objectives had to be met. They
include the following:

Identify CAN message IDs that are associated with controlling the speedometer and tachometer on the
instrument cluster.
Identify which byte/s offsets are responsible for vehicle and engine speed.
Build CAN network from scratch
Program Arduino Microcontroller

Reverse Engineering CAN IDs

This section describes a methodology for reverse engineering proprietary CAN message IDs on passenger
vehicles. Since BMW does not publicly disclose CAN message IDs for ECUs used in their vehicles, a method is
needed for reverse engineering these IDs. Several methods can be used for reverse engineering proprietary CAN
IDs, they include:

Visually identifying physical automotive events by plotting message data versus time
Fuzzing data fields of known message IDs (*DANGER WILL ROBINSON!)
Static analysis (identifying the actual source of a message by removing individual fuses)

The first method can be used to help identify messages that are reporting physical events of the vehicle, such as
vehicle/engine speed. Messages can be plotted with either individual bytes, or a combination of bytes from a
message versus time stamps. This would allow subjects analyzing the graphs to visually recognize any sort of
obvious plotting trends that were representative of the pattern expected. External measurement devices, such as
the VBOX (Velocity Box), can be used to cross reference actual measurements such as speed, to the actual
CAN traffic that was recorded on the CAN bus. The VBOX is a high accuracy GPS data logging device. This is
an excellent way to verify messages related to speed coming off of the CAN bus.

The second method is an excellent way of identifying byte/s offsets of individual CAN messages that are
designed to control CAN components. If a CAN message has been narrowed down or isolated but the data fields
of interest are still in question, fuzzing these fields can help determine the physical significance of the message
and data field combination. Note: This method can be EXTREMELY DANGEROUS, especially if attempted
during the live operation of a vehicle.

Alternatively, the third method can be used to identify the source component of a CAN message. By monitoring
CAN traffic with something like the Vector CANAlayzer, one can manually begin to individually remove fuses
from the automobiles fuse box to help isolate/determine the likely actual source of the CAN message. An
example of such a case could include hypothesizing the ECU source of a CAN message. By individually
removing fuses and simultaneously watching the CAN traffic to see which messages disappear, one can then
begin to determine the likely source of a CAN message.

Unique Messages on CAN bus

To passively capture the traffic coming off of the CAN bus, a Gryphon S3 data logging device was used to
capture all the traffic. The table below shows all of the messages that were broadcast over the MINI Cooper
CAN bus during the staged auto collision.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

4 of 27 8/8/2013 10:49 AM

MINI Cooper CAN Messages

CAN ID (Decimal) CAN ID (HEX)

339 0x153

496 0x1F0

499 0x1F3

501 0x1F5

504 0x1F8

790 0x316

809 0x329

822 0x336

1349 0x545

235 0x565

1555 0x613

1557 0x615

1560 0x618

1562 0x61A

1567 0x61F

Examining the CAN Capture

Now that we have our data capture from the CAN bus. We need to apply these methods of reverse engineering
the CAN IDs in order to tie actual CAN messages to components, and component functionality. We will start off
by looking for messages that are indicative of vehicle speed. We can do this by programmatically plotting
individual bytes of the data fields versus time from CAN messages as show below. This can be done in a variety
of ways including using simple scripts such as Bash/gnuplot, Python, Microsoft Excel, etc.

We start by plotting messages that were transmitted more frequently over the CAN bus during the data capture.
Note: A total of 106,600 messages were actually transmitted over the course of ~90 seconds.

Frequency of Messages

Message Frequency CAN IDs

12706 0x153

12706 0x1F0

12706 0x1F3

9460 0x1F5

12707 0x1F8

8899 0x316

8899 0x329

8899 0x336

8899 0x545

8899 0x565

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

5 of 27 8/8/2013 10:49 AM

433 0x613

433 0x615

433 0x618

434 0x61A

87 0x61F

*Message ID 0x153 The images below were produced using a Python script(link to Dr. Daily's script) that is
designed to parse the CAN data log produced by the Gryphon S3.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

6 of 27 8/8/2013 10:49 AM

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

7 of 27 8/8/2013 10:49 AM

As we can see, message ID 0x153 byte 2 of the data field shows a consistent increase over the duration of the
capture during the staged auto collision which lasted roughly 90 seconds. This increase is most indicative of

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

8 of 27 8/8/2013 10:49 AM

vehicle speed, as we know with external instrument measurements that the speed of the MINI Cooper just
before impact was nearing 30 MPH. Note: Other messages were also found to be indicative of vehicle speed,
these messages were likely from individual wheel sensors. However, these messages were not responsible for
controlling the speedometer directly.

 *CAN message used to manipulate

speedometer.

Now that we have identified the message ID and byte offset for vehicle speed, we need to isolate the ID and
data fields for engine speed. Because the MINI Cooper was propelled with a pulley system in the staged crash in
which the data log was recorded, the actual engine speed was at a constant idle speed throughout the capture.
Because of the engine speed being idle during the experiment, our previous method of visually identifying
message IDs based on data value against timestamps will be ineffective for identifying this message ID with this
data set. Instead, we will use a data log capture from a previous test run of the MINI Cooper. In this test the
driver performed a variety of skid tests within the confines of a controlled environment. Below are the results of
that data run in which we were able to visually identify engine like speed.

*Message ID 0x316

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

9 of 27 8/8/2013 10:49 AM

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

10 of 27 8/8/2013 10:49 AM

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

11 of 27 8/8/2013 10:49 AM

One of the more interesting things to measure and verify is vehicle speed. It is normal to see multiple messages
and or byte offsets that are representative of vehicle speed. Vehicle wheel speed sensors on the car can report
varying wheel speeds because of various physical interactions. This could include wheel slip, ice, etc. Although
these sensors are transmitting wheel speed, they are not necessarily the messages that are being transmitted to
the speedometer on the instrument cluster. For this reason, we are only interested in the vehicle speed being
reported to the speedometer of the instrument cluster.

There are 15 unique IDs in the log file that are summarized in the following table. The timing data in the table
below is approximate. Byte counts start at 0 and go to 7 for an 8 byte message.

Identified CAN Messages

CAN ID
(HEX)

Frequency
(Hz)

Period
(sec.)

Notes

0x153 142.756 0.00700497
Vehicle speed like message in byte 2. Byte 2 is used to manipulate
Speedometer.

0x1F0 142.756 0.00700497

0x1F3 142.756 0.00700497

0x1F5 106.296 0.00940773

0x1F8 142.756 0.00700497

0x316 99.9789 0.0100021

0x329 99.9789 0.0100021 Various indicator lights

0x336 99.9789 0.0100021

0x545 99.9902 0.010001

0x565 99.9902 0.010001

0x613 4.86513 0.205545
Message deals with tachometer functionality. Byte 3 is used to
control the tachometer directly.

0x615 4.86513 0.205545

0x618 4.86513 0.205545

0x61A 4.87647 0.205067
Controls the messages being displayed on the tachometer LED
screen.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

12 of 27 8/8/2013 10:49 AM

0x61F 0.975293 1.02533 Tachometer along with various indicator lights.

CAN Clock Proof of Concept

In this section we describe the steps in creating/building the CAN Clock proof of concept that simulates the
effect an attacker could have on a vehicle, assuming she has physical access. In this demonstration we transform
the speedometer and a tachometer from a wrecked 2003 MINI Cooper S into a literal clock, where the hours
will be represented by the speedometer (0-120 MPH) and the minutes will be represented by the tachometer
(0-6000 RPM). We build a CAN network with three physical CAN nodes. We generate CAN traffic by building
a CAN ECU using an Arduino microcontroller, MCP1215 CAN controller, and MCP2551 CAN transceiver.

The following hardware, software, and tools were used to construct the CAN Clock:

Hardware Supplies

2003 Mini Cooper S instrument cluster module(IKE)"This is actually the unit housing the speedometer"
2003 Mini Cooper S tachometer
Arduino Uno "Using REV 3 in this tutorial"
CAN-BUS Shield for Arduino Uno "Available from sparkfun.com"
2 x 120 ohms resistor
18 gauge twisted pair wire "For CAN bus backbone"
Wire nuts
Tie wraps
12V DC power source
2 x 1.5" x 1.625" x 1.25" brackets with bolts

Tools

Wire strippers
Solder
Soldering iron

Software

Python/Bash
Microsoft Excel

Tutorial

Initially the hardware was mounted onto a self-contained board. For prototyping purposes a 18” x 14” wood
board was used to house the platform of the CAN Clock. Next, the MINI Cooper gauges were mounted using
brackets, screws, and bolts.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

13 of 27 8/8/2013 10:49 AM

Since BMW does not publicly disclose CAN message IDs for their various ECU devices on passenger vehicles,
we applied our reverse engineering methodology described above. Using this methodology, we now have a
pretty solid idea of what message IDs and byte offsets are needed to control the display of the speedometer and
tachometer on the instrument cluster. The next step is building a small CAN network and a CAN node capable
of introducing messages onto the data bus. The first thing we need to do is build the CAN bus infrastructure. In
adhering to the CAN standard, we used about 18 inches of 18 gauge twisted pair wire for the actual CAN bus
backbone.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

14 of 27 8/8/2013 10:49 AM

We also terminate both ends of the twisted pair wire by using 120 Ω terminating resistors at each end to reduce
reflection.

We now have the CAN bus backbone built and ready to add nodes onto it. Next we attach the MINI Cooper
instrument cluster (which includes both the speedometer and tachometer) onto the network via its CAN data
lines. When attempting to modify hardware that is either unfamiliar or unknown, the first thing that should be
done is referencing the electrical schematics, if they are available. In this case we were able to utilize the MINI
Cooper electrical schematics from Mitchell (www.prodemand.com). Mitchell maintains an enormous repository
full of vehicle service manuals, diagnostic codes, and wiring schematics for a majority of passenger vehicles.
Leveraging this information was necessary for identifying the wires coming off of the instrument cluster units.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

15 of 27 8/8/2013 10:49 AM

Instrument Cluster Circuit

The wires of interest have been highlighted in the image below.

Wires associated with power

Wire 1 BRN/BLK = Ground
Wire 2 VIO/BLK = 12V power
source(HOT IN ACCY, RUN AND
START
Wire 3 BLK/VIO = 12V power
source(HOT IN START)
Wire 15 RED/YEL = 12V power
source(HOT AT ALL TIMES)
Wire 16 GRN/BLU = 12V power
source(HOT IN ON OR START)

CAN data lines

Wire 13 YEL/BRN = CAN-L
Wire 26 YEL/BLK = CAN-H

Once these wires were individually
identified, we striped the wires, spliced, and
soldered them together accordingly. We
striped the ends off of the 12V DC power
source and tied wires 2, 3, 15, and 16 of the
instrument cluster unit to the positive lead of
our power source (See images below). We
also tied Wire 1 (ground) to the negative
lead on our power supply. Next we connected the CAN high and low data lines to the network. We splice wires

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

16 of 27 8/8/2013 10:49 AM

13 and 26 from our instrument cluster into the CAN bus. Notice in the images below, CAN low is the blue wire
of the CAN bus, and CAN high is the tan. After capping our wire leads to both power source and splicing CAN
node entry points, we can plug in the power source to test that the instrument cluster powers on and works
properly. If all goes correctly, a chime can be heard as soon as power is applied.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

17 of 27 8/8/2013 10:49 AM

Now that the instrument cluster has successfully been connected to the CAN bus, we can configure the node
that will be responsible for transmitting data to the instrument cluster unit. This node will be acting as a rogue
device that an attacker could use to interact with other components on the CAN bus in nefarious ways. We will
be using an Arduino Uno Rev 3 and a CAN-Shield to achieve this.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

18 of 27 8/8/2013 10:49 AM

To interface the CAN shield with the data bus, we splice the 18 gauge twisted pair wire from the CAN bus and
solder CAN-H and CAN-L wires coming into the pins on the CAN shield.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

19 of 27 8/8/2013 10:49 AM

The Arduino will be powered from the same 12V DC power source that powers the instrument cluster. The
Arduino Uno features a built in voltage regulator at the power port. Considering the safety benefit of the voltage
regulator, applying 12V of power to the Arduino was not an issue as the Arduino Uno specifications explicitly
state that the microcontroller can handle a recommended 7 - 12 volts.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

20 of 27 8/8/2013 10:49 AM

In order for the Arduino to keep track of accurate time, even when the power is disrupted, we will use a real
time clock module (RTC). The RTC chip is powered with a small battery in order to retain the current time in
the event of power loss. The Arduino will poll the time from the RTC in order to transmit the accurate time to
the instrument cluster gauges. For demonstration purposes, we placed the RTC on a bread board separate from
the Arduino.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

21 of 27 8/8/2013 10:49 AM

Everything up to this point should be connected, and all that should be left is to program the microcontroller.
Other than the standard Arduino libraries, we will primarily be using the MCP2515 library to communicate with
the CAN controller, and SPI library to communicate with the CAN shield using the serial peripheral interface.
The MCP2515 library allows us to construct our own CAN Frame objects that can be injected onto the CAN
bus. We will also be using the Wire.h and RTClib.h libraries to communicate with the RTC module.

For purposes of demonstration, the microcontroller was configured to work in two modes of operation that can
easily be toggled by using the joystick click button on the CAN-Shield; Clock Mode, and Demo Mode (See
images below). Clock mode obviously polls the time from the RTC to display the current time on the instrument
cluster gauges via the CAN bus, and demo mode is used to increment the needles on the gauges arbitrarily to
demonstrate the dynamic manipulation of CAN traffic. The final product (CAN Clock) is shown below showing
a time of 2:47 p.m.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

22 of 27 8/8/2013 10:49 AM

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

23 of 27 8/8/2013 10:49 AM

Developed using the Arduino Programming Language which is based primarily on the C programming language.

/*
/*
Jason Staggs 3/11/2013
University of Tulsa
Crash Reconstruction Research Consortium (TU-CRRC)
http://tucrrc.utulsa.edu/canclock
CAN Clock Project
2003 Mini Cooper S
*/

//importing CAN shield library
#include <MCP2515.h>
#include <MCP2515_defs.h>
//Serial Perhiphial Interface
#include <SPI.h>
//RTC module library
#include <Wire.h>
#include "RTClib.h"

//Global variables
#define CLICK A4
//This defines the Slave Select pin for the CAN chip
#define CAN_CS 10
//interupt pin..
#define CAN_INT 2

MCP2515 CAN(CAN_CS,CAN_INT);

//Speedometer Frame object
Frame speedTx;
//Tachometer Frame object
Frame tachTx;

// CLOCK VARIABLES:
double hours = 0;
int minutes = 0;
int seconds = 0;

//clock boolean
boolean clock = true;

RTC_DS1307 RTC;

void setup()
{
 pinMode(A3, OUTPUT);
 digitalWrite(A3, HIGH);

 pinMode(A2, OUTPUT);
 digitalWrite(A2, LOW);

 Serial.begin(57600);
 Wire.begin();
 RTC.begin();

 if(! RTC.isrunning())
 {
 Serial.println("RTC is NOT running!");
 }

 SPI.setClockDivider(SPI_CLOCK_DIV2);
 SPI.setDataMode(SPI_MODE0);
 SPI.setBitOrder(MSBFIRST);
 SPI.begin();

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

24 of 27 8/8/2013 10:49 AM

 int baudRate=CAN.Init(500,16);
 if(baudRate>0) {
 Serial.println("MCP2515 Init OK ...");
 Serial.print("Baud Rate (kbps): ");
 Serial.println(baudRate,DEC);
 } else {
 Serial.println("MCP2515 Init Failed ...");
 }
 Serial.println("Initialization Complete.");

 //enable rollover...?
 CAN.BitModify(RXB0CTRL,0x04,0x04);

 pinMode(CLICK,INPUT);
 digitalWrite(CLICK, HIGH);

}

void loop()
{
 //runTest();
 if(clock)
 {
 clockMode();
 }

 if(digitalRead(CLICK) == 0 || clock == false)
 {
 clock = false;
 demoMode();
 }

 if(clock == false && digitalRead(CLICK) == 0)
 {
 clock = true;
 }
}

void clockMode()
{
 DateTime now = RTC.now();
 hours = now.hour();
 minutes = now.minute();
 seconds = now.second();

 if(hours > 12)
 {
 hours = hours - 12;
 }
 if(hours == 0)
 {
 hours = 12;
 }

 //fun action for hours
 if(minutes == 00 && seconds < 3)
 {
 hours = 15;
 }
 //Scale from program value to dial value
 hours = (hours + ((double)minutes / 60)) * 7.9;

 //fun action for minutes
 //scale minutes
 if(seconds < 3)
 {
 minutes = 80;
 }
 minutes = minutes *2.5;

 speedTx.id = 0x153;
 speedTx.srr = 0x0;
 speedTx.rtr = 0x0;
 speedTx.dlc = 0x8;
 speedTx.data[2] = hours;
 //Sending the frame on its way

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

25 of 27 8/8/2013 10:49 AM

 CAN.LoadBuffer(TXB0,speedTx);
 CAN.SendBuffer(TXB0);
 delay(5);

 tachTx.id = 0x316;
 tachTx.srr = 0x0;
 tachTx.rtr = 0x0;
 tachTx.dlc = 0x8;
 tachTx.data[3] = minutes;

 //Sending the frame on its way
 CAN.LoadBuffer(TXB0,tachTx);
 CAN.SendBuffer(TXB0);
 delay(80);

}

void demoMode()
{
 speedTx.id = 0x153;
 speedTx.srr = 0x0;
 speedTx.rtr = 0x0;
 speedTx.dlc = 0x8;
 speedTx.data[2] = hours;
 //Sending the frame on its way
 CAN.LoadBuffer(TXB0,speedTx);
 CAN.SendBuffer(TXB0);
 hours++;
 if(hours > 95)
 {
 hours = 0;
 }

 delay(5);

 tachTx.id = 0x316;
 tachTx.srr = 0x0;
 tachTx.rtr = 0x0;
 tachTx.dlc = 0x8;
 tachTx.data[3] = minutes;

 //Sending the frame on its way
 CAN.LoadBuffer(TXB0,tachTx);
 CAN.SendBuffer(TXB0);
 minutes++;
 delay(5);

 if(minutes > 150)
 {
 minutes = 0;
 }
 delay(80);
}

ProDemand (Mitchell Repair Information Company): https://www.prodemand.com/
Arduino API documentation: http://arduino.cc/en/Reference/HomePage/
Python API documentation: http://www.python.org/doc/
Good introductory book to CAN: http://www.amazon.com/Comprehensible-Guide-Controller-
Area-Network/dp/0976511606/ref=sr_1_2?ie=UTF8&qid=1362956577&sr=8-2&keywords=CAN+bus
Easy to read/comprehend intro to the CAN standard: http://www.ti.com/lit/an/sloa101a/sloa101a.pdf
GNU Plot: http://www.gnuplot.info/

Retrieved from "http://wiki.tucrrc.utulsa.edu/index.php?title=Jason_Staggs_-_CAN_Clock&oldid=2937"

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

26 of 27 8/8/2013 10:49 AM

This page was last modified on 29 July 2013, at 12:58.
This page has been accessed 181 times.

Jason Staggs - CAN Clock - Research Wiki http://wiki.tucrrc.utulsa.edu/index.php/Jason_Staggs_-_CAN_Clock

27 of 27 8/8/2013 10:49 AM

